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Abstract

The chemical composition of indoor air changes due to the reactive nature of the indoor 

environment. Historically, only the stable parent compounds were investigated due to their ease of 

measurement by conventional methods. Today, however, scientists can better characterize 

oxidation products (gas and particulatephase) formed by indoor chemistry. An understanding of 

occupant exposure can be developed through the investigation of indoor oxidants, the use of 

derivatization techniques, atmospheric pressure detection, the development of real-time 

technologies, and improved complex modeling techniques. Moreover, the connection between 

exposure and health effects is now receiving more attention from the research community. 

Nevertheless, a need still exists for improved understanding of the possible link between indoor air 

chemistry and observed acute or chronic health effects and long-term effects such as work-related 

asthma.
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1. Introduction

Indoor chemicals’ oxidation processes can be driven in the gas phase by oxidants like ozone 

(O3), hydroxyl radicals (OH) and nitrate radicals (NO3) and can lead to the formation of 
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oxygenated species (e.g. formaldehyde) and secondary organic aerosols (SOA). Detection 

and quantification of these oxidants in conjunction with oxidant precursors, reactants, and 
the reaction products (such as oxygenated organics, organic nitrates, SOA) are necessary to 

understand the oxidation processes indoors. This capability to measure oxidized species is 

important for characterizing the numerous contributions (emission, outdoor input, 

homogeneous and heterogeneous chemistry, …) that can lead to their formation, as well as 

gas- and surface-phase chemistry that can lead to their removal and the formation of new 

oxidation products.

Oxidative chemistry occurring indoors leads to the formation of several traditionally 

observed organics such as aldehydes (e.g. formaldehyde), ketones (e.g. acetone), carboxylic 

acids, esters, epoxides and dicarbonyls (Atkinson and Arey, 2003; Finlayson-Pitts and Pitts, 

2000); if their vapor pressure is sufficiently low, SOA are formed. However, numerous other 

oxidized species, such as primary/secondary ozonides, peroxides, organic nitrates, and 

multi-functional organics (e.g. hydroxy and nitroxy alkyl radicals, peroxy-hemiacetals, and 

carbonyl nitrates), and polymeric species are also generated indoors and require specialized 

detection methods (Atkinson and Arey, 2003; Docherty et al., 2005; Epstein et al., 2010; Li 

et al., 2002; Mutzel et al., 2013; Nørgaard et al., 2013; Tobias and Ziemann, 2000). 

Characterizing the formation (identification and yields) of these products and their 

respective phases (gas or particulate) in the indoor environment may help to resolve the gap 

between indoor occupant exposure and health effects. Understanding the physiological 

responses to these exposures is also a challenging endeavor. Potential avenues leading to 

health effects in the airways and the cardiovascular system include: sensory irritation, 

inflammatory reactions in the airways, sensitization, heart rate effects, delayed physiological 

response, and possibly dermal exposure routes (Nazaroff and Goldstein, 2015; Weschler and 

Nazaroff, 2012).

In an effort to highlight the recent developments toward understanding indoor air quality 

(IAQ), a session entitled “Reactive Indoor Air Chemistry and Health” was held at the 14th 

International Conference on Indoor Air Quality and Climate (Indoor Air 2016) in Ghent, 

Belgium, July 3–8, 2016. The workshop presentations included the following topics: The 

Role of Oxidants, Analytical Technologies, Modeling, and Health Effect Studies. Each of 

these topics will be discussed in a separate section below. While this summary is not all 

inclusive, it provides a current update of the topics highlighted above, recognizing that 

“reactive chemistry”, per se, is a much broader field, see e.g. (Uhde and Salthammer, 2007).

2. Role of oxidants: sources and impact on the indoor air quality

The limited number of oxidant (O3, OH, and NO3) measurements is due to both 

concentration and analytical challenges. There are commercially available instruments to 

measure the concentration of indoor O3 which is about 1011 molecules cm−3 (a few dozen 

ppb). However, indoor O3 concentration is strongly dependent on the air exchange rate 

(AER) and the outdoor concentration. OH and NO3 are even more challenging to measure 

because their concentrations have been estimated to be 105 and 107 molecules cm−3 (4 × 

10−3 and 0.4 ppt), respectively, and being highly reactive, they are difficult to collect and 

analyze (Sarwar et al., 2003). Only one article reports a measurement of the sum of N2O5 
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and NO3 concentrations indoors in the range of 107–108 molecules cm−3 (Nøjgaard, 2010). 

Existing instruments, developed for atmospheric measurements could be deployed in the 

future (Fuchs et al., 2008) to characterize NO3 and other species such as N2O5 (Goulette et 

al., 2016; Schuster et al., 2009; Womack et al., 2017).

For OH radicals indoors and more generally HOx (OH and hydroperoxyl (HO2) radicals), 

advances in optical spectroscopy and detection technologies have contributed to improved 

characterization of these elusive species. Instruments based on spectroscopic techniques 

(Fluorescence Assay by Gas Expansion, FAGE) capable of measuring real-time OH and 

HO2 radicals have already been deployed by two groups: Lille (France) (Blocquet et al., 

2016; Gómez Alvarez et al., 2013) and Leeds (United Kingdom) (Carslaw et al., 2017) to 

quantify HOx in different buildings under different conditions.

Two major sources of HOx radicals have been identified: the photolysis of nitrous acid 

(HONO) and the reaction of O3 with alkenes (Blocquet et al., 2016; Carslaw et al., 2017; 

Gómez Alvarez et al., 2013; Mendez et al., 2017a; Weschler and Shields, 1996). 

Measurements indicate multiple sources of HOx and the relative importance of each source 

will depend strongly on the ambient conditions, an association that has been implicated in 

recent models (Carslaw, 2016; Mendez et al., 2017a). Compared to predicted and previously 

measured indoors (Sarwar et al., 2003; Weschler and Shields, 1997; White et al., 2010), high 

concentrations (up to 107 molecules cm−3 for OH) have been measured during the use of an 

air cleaning device and cleaning products (Carslaw et al., 2017).

The investigation of indoor radical concentrations has highlighted the need for numerous 

ancilliary measurement techniques such as: the sunlight transmission through windows to 

quantify the photolysis processes and the light distribution in the room (Gandolfo et al., 

2016; Kowal et al., 2017), the radicals’ precursors (HONO, O3, alkenes, …), species 

involved in the recycling of the radicals (like NO), and a better understanding of the linkage 

of heterogeneous processes (especially HONO production) on indoor surfaces (Gómez 

Alvarez et al., 2014; Mendez et al., 2017b). These investigations have also challenged 

previous assumptions about indoor oxidation pathways such as photolysis indoors. 

Additionally, recent research using high temporal resolution instruments such as proton-

transfer reaction mass spectrometry (PTRMS) investigated the potential of occupants to 

contribute to indoor chemistry (Tang et al., 2016; Wisthaler and Weschler, 2010) and showed 

that occupants can react with ozone and emit oxidized organic compounds (Liu et al., 2016, 

2017; Tang et al., 2015; Zhou et al., 2016a,b). There is continous development of new 

methods for the detection of transient oxidant species, related intermediate species (like 

peroxyl radicals RO2) for atmospheric applications (Tan et al., 2016; Whalley et al., 2013), 

and parameters such as the OH reactivity (representing the sum of OH removal reactions) 

(Blocquet et al., 2016; Fuchs et al., 2017). There is also interest in developing the use of 

these instrurments in indoor environments to better characterize the gas-phase chemistry. 

Complementary research concerning kinetic studies of interest for indoor chemistry 

(Borduas et al., 2016) and measurement in real condtions are needed to evaluate its impact.
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3. Analytical technologies: methods/instrumentation for indoor air 

contaminants

3.1. Gas-phase and particulate-phase measurements

As discussed above, understanding volatile organic compounds’ (VOC) oxidation indoors is 

important for assessing gas-phase and particulate-phase occupant exposure. Thus, collection 

and transport of compounds without degradation for off-line laboratory analysis becomes 

relevant. Several methods have been used for field measurements that maintain compound 

stability until analysis, such as: active and passive desorption sampling tubes, canisters, 

annular denuders, impingers, and solid-phase microextraction (SPME) and chemical 

derivatization (Forester and Wells, 2009; Ham et al., 2016, 2015; Harrison and Wells, 2013; 

Jackson et al., 2017; Plog, 2012; Wells and Ham, 2014).

Gas-phase oxidation products have been measured using Fourier transform infrared 

spectroscopy (FTIR), gas and high-performance liquid chromatography/mass spectrometry 

(GC/MS and HPLC/MS), but recent techniques such as PTR-MS and atmospheric-pressure 

ionization mass spectrometry (API-MS) provide the advantage of real-time or near real-time 

data of target compounds coupled with high sensitivity (Cochran et al., 2016; Nozière et al., 

2015).

The need to characterize gas- and particle-phase species in real-time continues to grow. 

Current real-time instrumentation typically collects information on total organics for the gas-

phase species and particle number, size, surface area and distribution over time for the 

particulate-phase (Stefaniak, 2016). Manufacturers and academia have worked to address 

this need through the development of miniature GC/MS devices and gas-specific sensors; 

however, chromatography limits, power requirements, sensor “fouling”, and the sheer 

number of potential oxidized compounds continue to plague their integration into the field 

(Brüggemann et al., 2015; Laborie et al., 2016; Nölscher et al., 2012; Wang et al., 2015; 

Wolf et al., 2016; Wolf et al., 2015a,b; Zhou et al., 2015).

3.2. Reactive oxygen species (ROS)

Reactive oxygen species can occur indoors (Fan et al., 2005) and include chemical species 

such as peroxides (ROOR’), OH, superoxide (O2
−), hydrogen peroxide (H2O2), HO2, 

hypochlorite ions (OCl−) and O3. Exposure to these species could induce oxidative stress in 

the respiratory tract and other areas such as skin (Brem et al., 2017; Kehrer, 1993; Klaunig 

and Kamendulis, 2004; Schuch et al., 2017). Indoor ROS concentrations have been 

measured by derivatizing them with 2′,7′-dichlorofluorescin diacetate to form the 

fluorescent compound, dichlorofluorescein (Hung and Wang, 2001; Venkatachari et al., 

2005). Indoor air ROS is determined as a concentration, yet actual chemical structural 

information remains elusive (Hopke et al., 2011; Khurshid et al., 2014, 2016; Liu and 

Hopke, 2014; Pavlovic and Hopke, 2011).
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4. Modeling to characterize personal exposure to reactive chemistry

Exposure is defined as the time integral of concentration between relevant time durations of 

interest. Utilizing the U.S. National Research Council 1983 Risk Assessment Paradigm, 

once hazard identification occurs, exposure and dose-response assessments occur in parallel 

and are combined to provide information on the risk characterization, for which a risk 
management program may be developed if warranted. One problem with using modeling 

within this approach is that modeling typically predicts indoor, not personal concentrations, 

which is the most relevant parameter for exposure assessments. However, combining 

computational fluid dynamics (CFD) with reactive chemistry modeling could be used to 

develop personal factors, PF, defined as PF = (personal exposure concentration/room 

concentration), in the future for a variety of typical scenarios. However, modeling is 

beneficial within this risk assessment paradigm in that some reactive chemistry products, 

such as short lived intermediates (e.g. radicals) or highly oxidized compounds, cannot be 

measured indoors without highly sophisticated equipment as described above, so modeling 

can fill this informational gap.

For this discussion, reactive chemistry models are broadly classified into reduced-order, 

inexplicit models versus detailed, largely explicit manifestations. One advantage of reduced 

order models is that they are less computationally intensive than detailed models, so they are 

useful in large modeling efforts such as Monte Carlo frameworks, which use probability 

distributions as inputs in mechanistic models to bound uncertainty and/or understand 

stochastic influence (Saltelli et al., 2006).

For instance, studies have used Monte Carlo approaches with reduced-order models to 

explore indoor oxidation and SOA formation from VOC oxidation as described above. To 

parameterize formation, modelers use the aerosol mass fraction, AMF = (SOA mass 

formed/VOC mass reacted), which is an empirical parameter, not constant, and varies with 

the SOA concentration, compound class, and O3-to-VOC ratio for alkenes. The AMF 

frameworks lump the many semi-volatile organic compounds (SVOCs) generated by 

VOC/O3 reactions that can form SOA into groups delineated by volatility, and overall 

partitioning is owing to the sum of the individual group behaviors (Odum et al., 1996; Presto 

and Donahue, 2006). The AMF has been measured for ozonolysis of VOC under indoor 

relevant conditions, for instance for α-pinene (Chen and Hopke, 2009b; Youssefi and 

Waring, 2015), limonene (Chen and Hopke, 2010; Waring, 2016; Youssefi and Waring, 

2014), α-terpineol (Yang and Waring, 2016), and linalool (Chen and Hopke, 2009a).

Waring (2014) used a variant of the modeling framework first set forth in Youssefi and 

Waring (2012) in a Monte Carlo framework to predict the fraction of fine particle mass of 

SOA and determinants of SOA formation strength in residences. This application was 

insightful since SOA formation had been anecdotally observed, but actual bounds of its 

strength in buildings were little studied. Distribution data were derived using the 

Relationship of Indoor, Outdoor, and Personal Air Study (RIOPA) (Weisel et al., 2005), 

which measured AERs, aerosol deposition rates, outdoor and indoor VOCs, and organic and 

inorganic aerosol in 300 U.S. homes. Waring (2014) predicted that the median SOA 

concentration was 1.0 μg/m3, much less than median total organic and fine aerosol 
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concentrations of 8.7 and 17 μg/m3, respectively (Waring, 2014). However, the Monte Carlo 

approach demonstrated that for certain combinations of parameters realized in the RIOPA 

dataset (low AER, high O3, and high terpenes), SOA formation was greater than ∼ 50% of 

indoor organic and ∼ 30% of fine aerosol for ∼ 10% of homes. Relatedly, other Monte Carlo 

efforts have examined indoor O3 alone, since it is a driver of indoor chemistry with 

pulmonary effect (World Health Organization, 2006). Morrison et al., (2011) explored 

setting maximum O3 emission rates from consumer appliances, Rackes and Waring (2013) 

investigated the impact of demand controlled ventilation (DCV) on O3 in U.S. offices, and 

Waring and Wells (2015) explored sources and sinks of oxidants in U.S. residences.

Detailed chemical models for indoor air have strengths that differentiate them from reduced 

order inexplicit models. There is a wealth of chemical detail inherent within their design, 

which permits the user to investigate reaction pathways and products. For instance, the 

INdoor air Detailed Chemical box Model (INDCM) (Carslaw, 2007; Carslaw et al., 2015) 

contains around 5000 species and 20,000 reactions and is based on a detailed chemical 

mechanism called the Master Chemical Mechanism (MCM) (http://mcm.leeds.ac.uk/MCM/; 

(Jenkin et al., 1997)). Given that measurements are only available for a small sub-set of 

these 5000 species, model predictions provide insight that is not possible by current 

measurement techniques.

Results from detailed chemical models have provided some useful insights with regards to 

how people are exposed to reactive chemicals indoors. One interesting revelation has been 

the importance of radical species indoors, particularly the OH radical. Carslaw (2007) 

demonstrated with the INDCM that many reaction fluxes involving radical species were of 

similar magnitude indoors to outdoors. Although photolysis processes involving ultraviolet 

(UV) light were significantly diminished indoors compared to outdoors (factor of ∼ 100), 

those involving longer wavelengths of light such as carbonyl photolysis were only 2–3 times 

lower than outdoors. Oxidation of VOCs by OH can also proceed at a similar rate indoors 

and outdoors: although OH concentrations are typically lower indoors than outdoors by a 

factor of 5–10 (Carslaw, 2007; Sarwar et al., 2003), VOC concentrations show the reverse 

trend.

Another insight provided through detailed chemical modeling is the range of secondary 

species in indoor air. Using the INDCM highlighted the important secondary species that 

follow cleaning activities (Carslaw, 2013). For limonene the preliminary reactions have been 

studied in a kinetics laboratory, but then much of the mechanism is assembled via the MCM 

protocol (through analogy and structure activity relationships). Note that for 3-

isopropenyl-6-oxo-heptanal (IPOH) and 4-acetyl-1-methylcyclohexene (4-AMCH), the 

human reference values have been derived for airway effects (Wolkoff et al., 2013). The 

modeling study suggests they do not reach high enough values during typical cleaning 

activities to cause health effects, but there is little information about most of the other 

species (see Health effects section). Many research groups have confirmed the presence of 

IPOH from limonene oxidation, although the experimental existence of 3-acetyl-6-

oxoheptanal (3-AOH) in the same system depended on the co-concentrations of OH or O3 

(Grosjean et al., 1992; Wells and Ham, 2014; Weschler and Shields, 1999).
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The INDCM has also been used to investigate the surface composition of SOA following 

cleaning with a limonene-containing cleaner (Carslaw et al., 2012). A key finding is the 

importance of nitrated and peroxide material at the surface of the particles. There has been 

little focus on nitrated material in indoor SOA to date, despite Weschler suggesting such 

species could be important indoors more than 15 years ago (Weschler, 2001). This could be 

because many of the laboratory studies investigating particle formation following limonene 

oxidation have been carried out under low NOx conditions (∼ 30 ppb; 7 × 1011 molecules 

cm−3) (Carslaw et al., 2012). However, such conditions are not always relevant for indoors. 

Outdoors, organic nitrates are common components of ambient sub-micron particles: a study 

of high-NOx (500 ppb; 1.2 × 1013 molecules cm−3) photo-oxidation of limonene found that 

organic nitrates comprised ∼36% of SOA mass (Rollins et al., 2010) further suggesting the 

potential for organic nitrates to be important components of indoor SOA. Also, recent work 

by the National Institute for Occupational Safety and Health (NIOSH) on terpene oxidation 

in the presence of varying NO concentrations suggested that nitrate formation occurred 

(Ham et al., 2016).

The potential importance of peroxides in the aerosol phase following limonene oxidation has 

been suggested previously (Fan et al., 2005; Nazaroff and Weschler, 2004). Like organic 

nitrates, peroxides are challenging to measure. Peroxides formed from terpene oxidation 

have been shown to contribute significantly (47 and 85% for α- and β-pinene, respectively) 

to the total SOA mass in NOx-free chamber experiments (Docherty et al., 2005). Peroxides 

and nitrated species may be more important for exposure indoors than outdoors, owing to 

their much lower photolysis rates and hence longer lifetimes indoors (Chen and Hopke, 

2009b; Fan et al., 2005).

A more direct link to exposure was described by Terry et al., (2014), who used a reduced 

version of the INDCM (19 species, 44 reactions) and combined it with the INDAIR/EXPAIR 

modeling framework that aimed to simulate frequency distributions of indoor concentrations 

(INDAIR) and personal exposures to air pollutants (EXPAIR) within urban populations 

(Dimitroulopoulou et al., 2006). The reduced model was used to show that IAQ deteriorated 

during heatwave conditions, when high outdoor temperatures were accompanied by high 

outdoor and hence indoor O3 and PM. There was a particularly important impact on the time 

of day of cleaning. If cleaning was carried out at the start of the day (with a limonene-

containing cleaner), outdoor and hence indoor concentrations of O3 and those of reaction 

products indoors formed through chemistry were relatively low. However, office workers 

would then begin work while reaction product concentrations remained elevated for several 

hours (e.g. at an AER of 1.5 h−1, formaldehyde concentrations were 6.7 ppb compared to 5.7 

ppb with no cleaning). Cleaning at the end of the working day led to higher reaction product 

concentrations as indoor O3 concentrations were higher relative to the morning (for the same 

AER, formaldehyde concentrations were 14.8 ppb compared to 8.9 ppb with no cleaning). 

Although office workers had gone home, the cleaners were subjected to higher 

concentrations than if they carried out their tasks in the morning.
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5. Health effect studies

5.1. In vitro technologies to assess health effects

In vitro testing approaches have been applied in the last decade to assess acute airway effects 

from chemical species in indoor air (Rohr, 2013).

For in vitro health effect studies of indoor air compounds, so far mostly single-cell models 

consisting of lung epithelial cell types have been used for air-liquid-interface (ALI) 

exposures (Anderson et al., 2010; Bardet et al., 2014; Doyle et al., 2004).

Different in vitro studies have indicated that the exposure of lung epithelial cells to reaction 

products from major indoor air compounds and O3 may produce more severe effects 

compared to the parent compounds (Anderson et al., 2013; Doyle et al., 2004; Gaschen et 

al., 2010; Pariselli et al., 2009; Sexton et al., 2004; Zavala et al., 2016). The measured 

toxicity outcome seems, however, to vary depending on the physiology and sensitivity of the 

applied cell/tissue model (Anderson et al., 2013; Doyle et al., 2004; Lipsa et al., 2016; 

Persoz et al., 2012), as well as the specific aerosol exposure set-up. Related to the latter, the 

main parameters introducing variability among different studies include: the applied 

methods for atmosphere generation, premixing of atmospheres in environmental chambers 

of different dimensions showing variable AERs and reaction times, the in vitro aerosol 

exposure technique such as placement of cell cultures directly in the test (Ayyagari et al., 

2004; Doyle et al., 2004; Liu et al., 2013), in-line coupling of the exposure atmosphere to a 

CULTEX® or VITROCELL® device containing cells (Gminski et al., 2010; Pariselli et al., 

2009; Persoz et al., 2010), or magnetic nanoparticle-mediated SOA deposition onto the cells 

(Jang et al., 2006), in vitro aerosol exposure flow rate and humidification, and lastly the 

chemical doses and exposure duration (Anderson et al., 2013). The classical toxicity 

endpoints studied so far include cell proliferation, cell membrane integrity, oxidative stress, 

proand/or anti-inflammatory response, and DNA damage. Among these upregulated mRNA 

expression and/or secretion of inflammatory cytokines, such as interleukin (IL)-8, seems to 

be most sensitive and consistent indicators of cell homeostatic interruption at chemical 

concentrations that do not affect cell viability (Bardet et al., 2014; Gaschen et al., 2010; 

Kastner et al., 2013; Lipsa et al., 2016; Rohr, 2013).

Additionally, the use of advanced in vitro cell models, e.g. co-cultures consisting of different 

cell types (Klein et al., 2013; Rothen-Rutishauser et al., 2005), tissue slices (Switalla et al., 

2010), or 3D reconstructed lung tissue models (Anderson et al., 2013; Zavala et al., 2016), 

that capture in a realistic way the lower airway physiology in healthy or diseased conditions, 

and allow for chronic or repeated, low-dose exposure (Anderson et al., 2010, 2013; Bardet et 

al., 2014; Kastner et al., 2013) may further improve the predictive capacity for humans. 

Finally, to be able to use in vitro ALI exposure methods as a valuable proxy for real-life 

exposure situations and supplement to animal studies, further integration of cell biological 

and aerosol characterization disciplines, and in-depth validation with inhalative in vivo 
studies and standardization of the various aspects related to such methods is needed (Paur et 

al., 2011).
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5.2. Animal studies for health effect assessment

A number of acute airway effects studies of ozone-terpenes reaction mixtures in rodents 

have been reviewed by Rohr (2013). The major effects were sensory irritation in the upper 

airways with some minor effects observed in the conducting airways, while inflammation 

was not observed. For instance, bronchoalveolar lavage (BAL) in mice exposed repeatedly to 

03-initiated limonene oxidation products for 10 days showed no signs of inflammation and 

did not cause elevated development of airflow limitation or inflammation in the airways; 

sensory irritation was the major effect observed (Wolkoff et al., 2012). Based on the study, it 

was concluded that O3 < 200 μg/m3 (0.1 ppm; 2.5 × 1012 molecules cm−3) would be safe, 

even at high levels of limonene. About 75% of the sensory response could be assigned to 

formaldehyde and residual limonene (Wolkoff et al., 2008); however, moderate airflow 

limitation (bronchoconstriction) was also observed (Rohr et al., 2002; Wolkoff et al., 2008). 

The O3-initiated limonene products in a reaction mixture showed no biological response 

from denuded SOA regarding sensory effects or airflow limitation (Wolkoff et al., 2008).

In one study, F344 rats and ApoE − / − mice were exposed for seven days to denuded α-

pinene SOA (200 μg/m3), derived from UV radiation of a mixture of NO2 (+ /− SO2) and α-

pinene (McDonald et al., 2010). Pulmonary inflammation was not observed in either mice or 

rats. The authors suggested the gaseous products to be of concern rather than SOA. 

Furthermore, the biological response was mild, also for cardiovascular effects. Further, 

denuded SOA generated from 1670 μg/m3 (300ppb; 7.4 × 1012 molecules cm−3) α-pinene 

and 975 μg/m3 (500ppb; 1.2 × 1013 molecules cm−3) O3 did not show clear pulmonary or 

systemic responses in rats, cf. (Rohr, 2013).

Interestingly, limonene may act as a scavenger for O3 and ROS (inflammatory mediators); 

for instance, as a local scavenger in the airways. Thus, an anti-inflammatory prophylactic 

effect of limonene alone has been shown in rodent inhalation models of allergic 

inflammation (Bibi et al., 2015; Hirota et al., 2012; Keinan et al., 2005) and also in a mice 

inhalation model for the O3/limonene system (Hansen et al., 2013, 2016). Anti-

inflammatory effects in lungs have also been suggested for linalool (Huo et al., 2013).

5.3. Human health effect studies

Three human exposure studies have been carried out under controlled conditions in climate 

chambers. The studies aimed to explore both acute symptoms (sensory reactions) and 

inflammatory reactions in the airways. In the first one, young women (n = 130) were 

exposed to a typical indoor mixture with 23 VOCs (TVOC = 26 mg/m3), including α-pinene 

(162 ppb, 0.9 mg/m3, 4 × 1012 molecules cm−3) and limonene (126 ppb, 0.7 mg/m3, 3 × 

1012 molecules cm−3), for 140 min in a controlled climate chamber (25 m3, 1.8 h−1). The 

subjects’ perception was masked by butyl acetate prior to the exposure. The mixture was 

used as such or mixed with O3 resulting in a residual concentration of 0.08 mg/m3. No sign 

of inflammatory effects in nasal lavage was seen (Laumbach et al., 2005). The symptom 

rating was marginal and not statistically significant with or without O3 (Fiedler et al., 2005). 

The excess of VOCs may have scavenged the effects of the reaction mixture. In the second 

study, young non-asthmatic subjects (n = 33) and mild asthmatics (n = 38) were blindly 

exposed to a steady-state reaction mixture of maximum 74 μg/m3 (36 ppb; 9 × 1011 
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molecules cm−3) O3 and 200 μg/m3 (37 ppb; 9 × 1011 molecules cm−3) limonene for 3 h in a 

climate chamber (240 m3; 1 h−1, recirculation 7 h−1) (Fadeyi et al., 2015). The asthmatic 

subjects perceived significantly less nose and throat sensory irritation than the non-asthmatic 

subjects. The rating was less than 15 on a continuous intensity scale from 0 to 100 with 20 = 

slight irritation. The difference between the non-asthmatic and asthmatic subjects is 

compatible with recent studies with naïve and sensitized mice exposed to formaldehyde 

(strong sensory irritant) or a reaction mixture of O3 and limonene indicating that 

“asthmatics” are less sensitive regarding sensory irritation in the airways (Hansen et al., 

2016; Larsen et al., 2013). The differences in sensory eye irritation were insignificant; the 

difference was less than 13 on the intensity scale which is compatible with an expected 

formaldehyde concentration less than 50 μg/m3 (40 ppb; 1 × 1012 molecules cm−3) 

(anticipated 20% reaction (Atkinson and Arey, 2003)), significantly lower than the threshold 

for sensory irritation in the eyes (Wolkoff and Nielsen, 2010). Furthermore, a stress marker 

(α-amylase) in saliva increased significantly in both the normal and asthmatic subjects after 

the exposure, but significantly more among the asthmatics. The limonene concentration was 

about a factor of four higher than its odor threshold (Cain et al., 2007), which may have 

caused concern (arousal) and provoke a slightly higher stress level among the asthmatics 

(non-statistical) than in the non-asthmatics (cf. (Wolkoff and Nielsen, 2017)); another 

possibility could be the reaction products or their added contribution to the combined odor 

perception. Furthermore, the higher stress level, possible caused by the odor, is compatible 

with the reported symptoms (e.g. chest tightness and headache), cf. Wolkoff and Nielsen 

(2017). In the third study, high frequency heart-rate variability (index of parasympathetic 

activity) was decreased about 4% in healthy women (n = 22) exposed (double-blind) to a 

reaction mixture of limonene and O3 for three hours in a controlled climate chamber (22 

m3). The initial/residual mean concentrations of limonene and O3 were 900/80 μg/m3 

(162/41 ppb; 4/1 × 1012 molecules cm−3) and 80/10 μg/m3 (14/5 ppb; 3/0.1 × 1011 

molecules cm−3), respectively. The mixture was composed of gaseous products and SOA 

(mean 80 μg/m3) (Hagerman et al., 2014). The initial and residual concentrations of 

limonene and O3 were substantially higher than commonly found in indoor air, but far below 

those which cause sensory or lung reactions (Wolkoff et al., 2012). However, the residual 

limonene concentration was twice its P50 odor threshold (Cain et al., 2007); thus, the odor 

perception of limonene and its reaction products was intense and possibly unpleasant to 

some of the subjects. This may have influenced the parasympathetic tone, in agreement with 

Glass et al. (2014); however, the SOA could also have been causative.

All in all, apart from sensory reactions in the upper airways or eyes, neither animal nor 

human studies have indicated inflammatory reactions in the upper and lower airways, and 

similarly so for cardiovascular effects.

5.4. Human reference values

Human reference values for life-long exposure have been derived from a mouse inhalation 

model for key oxygenated species such as 4-AMCH, IPOH, 6-methyl-5-heptene-2-one (6-

MHO), dihydrocarvone (DHC), and 4-oxo-pentanal (4-OPA). Pulmonary irritation was not 

observed as a critical effect for these oxidation products; relatively low reference values 

were derived for airflow limitation for 4-OPA (123 μg/m3, 30 ppb; 7.4 × 1011 molecules cm
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−3) and sensory irritation for IPOH (1100 μg/m3, 160 ppb) (Wolkoff et al., 2013, 2014). 

Although the number of reference values is limited to a few oxidation products, it is 

important to note that the major effect from α-pinene or limonene reaction mixtures is 

sensory irritation in the upper airways and without sign of an increase upon repeated 

exposure or effects in the lower airways; furthermore, BAL has not indicated inflammation.

6. Conclusions

Describing IAQ based on health effect outcomes continues to be a challenge. However, as 

can be seen from the preceding summary, there have been many advances in the areas of 

transient radical detection and concentration measurement, indoor air chemistry modeling, 

gas- and particulate-phase characterization, and physiological responses to reactive indoor 

air. There are several potential areas of improvement in these research areas that, if 

successfully achieved, could facilitate practical ways to carry out risk assessments, improve 

IAQ and reduce occupant exposure. Current challenges for improved screening of potential 

airway effects from indoor air reactants should include quantification of aerosol particles 

and radicals that impact the function of airway cells, besides methods that allow for real-

time quantification of chemical reactants present at low levels.

Due to large surface to volume ratios in many indoor environments, a growing need to 

understand the impact of surfaces on indoor occupant exposure has evolved. Topics such as 

O3 removal, terpene-bound surface chemistry and formed products, surface pH, and surface-

bound water need improved understanding (Gall et al., 2015; Wang and Waring, 2014; 

Waring and Siegel, 2013). Another type of surface chemistry, though on a much smaller 

scale, is on and within particulate matter such as SOA (Borrowman et al., 2016; Dilbeck and 

Finlayson-Pitts, 2013; George and Abbatt, 2010; Kolb et al., 2010; Shiraiwa et al., 2011). 

Experimental challenges include: development of methods to coat surfaces with chemicals/

formulations of interest, oxidant introduction to surfaces, and surface emission collection 

with reaction yield determination, characterization of the oxidized surface to identify 

reaction products remaining on surface, SOA generation, SOA collection, and 

characterization of SOA components. The reactions within and on particulate matter is only 

now being explored through the use of API mass spectrometers using different ionization 

techniques (Brüggemann et al., 2015; Zhou et al., 2015).

Future indoor field campaigns regarding indoor oxidant chemistry should have goals of:

• continued characterization of oxidant sources and sinks,

• measurements to confirm the existence of species that models predict to reach 

concentrations relevant for occupant exposure and to reduce uncertainties in 

photolysis,

• deposition and surface production rates.

Future laboratory experiments could have the goals of:

• developing analytical techniques, in both time-integrated and realtime, to 

confirm key intermediates in chemical oxidation mechanisms,
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• investigating adverse airway effects from exposure to single/mixtures of oxidized 

species in both gas- and particle-phases,

• exploring the potential anti-inflammatory effects of terpenes and their O3-

initiated terpene reaction mixtures, characterizing indoor generated particulate 

matter,

• developing biological cell-based models that mimic realistic exposure scenarios 

in parallel with and validated against in vivo inhalation models, and investigating 

ways for parameterizing indoor surface reactions.

In order to improve models for indoor air chemistry and to understand the impacts on health 

of reactive chemicals, greater collaboration is needed between different modelers, 

experimentalists and those with health and toxicological expertise. In particular, the indoor 

modeling community needs:

• more population- and probability-based studies of exposure,

• more indoor measurements to confirm presence of species that models predict to 

attain high concentrations indoors,

• more laboratory experiments to confirm key intermediates for chemistry,

• model studies to determine deposition rates of key intermediates in the airways.

Future health effect studies to improve our understanding of the mechanisms of 

physiological response to indoor air chemistry would be essential as an alternative to 

controlled human exposure studies. The development of a universal response model that 

could be used in many different indoor air scenarios and would be used by the health effects 

research community would be advantageous for identifying strategies to improve indoor air.

While several of these needs are similar to ones noted previously (Nazaroff and Goldstein, 

2015; Weschler, 2011; Weschler et al., 2006), new needs to improve the indoor environment 

were identified in this workshop.
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